On functions with vanishing local derivative
نویسندگان
چکیده
منابع مشابه
Local Derivative Pattern with Smart Thresholding: Local Composition Derivative Pattern for Palmprint Matching
Palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. Texture is one of the most important features extracted from low resolution images. In this paper, a new local descriptor, Local Composition Derivative Pattern (LCDP) is proposed to extract smartly stronger...
متن کاملON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring, $fa$ anideal of $R$ and $mathcal{D}(R)$ denote the derived category of$R$-modules. For any homologically bounded complex $X$, we conjecture that$sup {bf L}Lambda^{fa}(X)leq$ mag$_RX$. We prove thisin several cases. This generalize the main result of Hatamkhani and Divaani-Aazar cite{HD} for complexes.
متن کاملLocal Self-concordance of Barrier Functions Based on Kernel-functions
Many efficient interior-point methods (IPMs) are based on the use of a self-concordant barrier function for the domain of the problem that has to be solved. Recently, a wide class of new barrier functions has been introduced in which the functions are not self-concordant, but despite this fact give rise to efficient IPMs. Here, we introduce the notion of locally self-concordant barrier functio...
متن کاملlocal derivative pattern with smart thresholding: local composition derivative pattern for palmprint matching
palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. texture is one of the most important features extracted from low resolution images. in this paper, a new local descriptor, local composition derivative pattern (lcdp) is proposed to extract smartly stronger...
متن کاملNon-vanishing of the Central Derivative of Canonical Hecke L-functions
Every Hecke character of K satisfying (1.1) and (1.2) is actually a quadratic twist of a canonical Hecke character (see Section 2 for a precise description of these characters and which fields have them). Let L(s, χ) denote the Hecke L-function of χ, and Λ(s, χ) its completion; Λ(s, χ) satisfies the functional equation Λ(s, χ) = W (χ)Λ(2 − s, χ), where W (χ) = ±1 is the root number. If χ is a c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Polonici Mathematici
سال: 1986
ISSN: 0066-2216,1730-6272
DOI: 10.4064/ap-47-2-179-188